Evaluating Characteristics of De Novo Assembly Software on 454 Transcriptome Data: A Simulation Approach
نویسندگان
چکیده
BACKGROUND The quantity of transcriptome data is rapidly increasing for non-model organisms. As sequencing technology advances, focus shifts towards solving bioinformatic challenges, of which sequence read assembly is the first task. Recent studies have compared the performance of different software to establish a best practice for transcriptome assembly. Here, we adapted a simulation approach to evaluate specific features of assembly programs on 454 data. The novelty of our study is that the simulation allows us to calculate a model assembly as reference point for comparison. FINDINGS The simulation approach allows us to compare basic metrics of assemblies computed by different software applications (CAP3, MIRA, Newbler, and Oases) to a known optimal solution. We found MIRA and CAP3 are conservative in merging reads. This resulted in comparably high number of short contigs. In contrast, Newbler more readily merged reads into longer contigs, while Oases produced the overall shortest assembly. Due to the simulation approach, reads could be traced back to their correct placement within the transcriptome. Together with mapping reads onto the assembled contigs, we were able to evaluate ambiguity in the assemblies. This analysis further supported the conservative nature of MIRA and CAP3, which resulted in low proportions of chimeric contigs, but high redundancy. Newbler produced less redundancy, but the proportion of chimeric contigs was higher. CONCLUSION Our evaluation of four assemblers suggested that MIRA and Newbler slightly outperformed the other programs, while showing contrasting characteristics. Oases did not perform very well on the 454 reads. Our evaluation indicated that the software was either conservative (MIRA) or liberal (Newbler) about merging reads into contigs. This suggested that in choosing an assembly program researchers should carefully consider their follow up analysis and consequences of the chosen approach to gain an assembly.
منابع مشابه
Clustering of Short Read Sequences for de novo Transcriptome Assembly
Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...
متن کاملA Comparison of Next Generation Sequencing Technologies for Transcriptome Assembly and Utility for RNA-Seq in a Non-Model Bird
De novo assembled transcriptomes, in combination with RNA-Seq, are powerful tools to explore gene sequence and expression level in organisms without reference genomes. Investigators must first choose which high throughput sequencing platforms will provide data most suitable for their experimental goals. In this study, we explore the utility of 454 and Illumina sequences for de novo transcriptom...
متن کاملEvaluation of de novo assembly technique in the South African abalone Haliotis midae transcriptome: A comparison from Illumina and 454 systems
Next generation sequencing platforms have recently been used to rapidly characterize transcriptome sequences from a number of non-model organisms. The present study compares two of the most frequently used platforms, the Roche 454-pyrosequencing and the Illumina sequencing-by-synthesis (SBS), on the same RNA sample obtained from an intertidal gastropod mollusc species, Haliotis midae. All the s...
متن کاملA de novo metagenomic assembly program for shotgun DNA reads
MOTIVATION A high-quality assembly of reads generated from shotgun sequencing is a substantial step in metagenome projects. Although traditional assemblers have been employed in initial analysis of metagenomes, they cannot surmount the challenges created by the features of metagenomic data. RESULT We present a de novo assembly approach and its implementation named MAP (metagenomic assembly pr...
متن کاملSCARF: maximizing next-generation EST assemblies for evolutionary and population genomic analyses
SUMMARY Scaffolded and Corrected Assembly of Roche 454 (SCARF) is a next-generation sequence assembly tool for evolutionary genomics that is designed especially for assembling 454 EST sequences against high-quality reference sequences from related species. The program was created to knit together 454 contigs that do not assemble during traditional de novo assembly, using a reference sequence li...
متن کامل